FISEVIER

Contents lists available at ScienceDirect

Bioorganic & Medicinal Chemistry Letters

journal homepage: www.elsevier.com/locate/bmcl

Ceratinadins A–C, new bromotyrosine alkaloids from an Okinawan marine sponge *Pseudoceratina* sp.

Yuji Kon^a, Takaaki Kubota^a, Azusa Shibazaki^b, Tohru Gonoi^b, Jun'ichi Kobayashi^{a,*}

- ^a Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
- ^b Medical Mycology Research Center, Chiba University, Chiba 260-0856, Japan

ARTICLE INFO

Article history:
Received 7 May 2010
Revised 29 May 2010
Accepted 2 June 2010
Available online 8 June 2010

Keywords: Verongid sponge Pseudoceratina sp. Bromotyrosine alkaloids Ceratinadins A–C

ABSTRACT

Three new bromotyrosine alkaloids, ceratinadins A–C (1-3), were isolated from an Okinawan marine sponge *Pseudoceratina* sp. and the structures of 1-3 were elucidated on the basis of spectroscopic data. Ceratinadin A (1) was a novel bromotyrosine alkaloid possessing an *N*-imidazolyl-quinolinone moiety. Ceratinadins A (1) and B (2) showed antifungal activity.

© 2010 Elsevier Ltd. All rights reserved.

Marine sponges of the order Verongidae have been found to contain a number of bromotyrosine alkaloids.¹ In our search for bioactive substances from marine sponges, a series of bromotyrosine alkaloids have been isolated from a Verongid marine sponges such as *Pseudoceratina* (= *Psammaplysilla*) sp. and *Suberea* sp.^{2–4} Recently, we have investigated extracts of an Okinawan sponge *Pseudoceratina* sp. (SS-214) and isolated three new bromotyrosine alkaloids, ceratinadins A–C (1–3). Here we describe the isolation and structure elucidation of 1–3.

The sponge *Pseudoceratina* sp. (SS-214) collected off Ishigaki Island, Okinawa, was extracted with MeOH. n-BuOH-soluble materials of the extract were purified by a C_{18} column (MeOH/H $_2$ O/TFA, $10:90:0 \rightarrow 100:0:0.1$), C_{18} MPLC (CH $_3$ CN/H $_2$ O/TFA, 30:70:0.1), and C_{18} HPLC (CH $_3$ CN/H $_2$ O/TFA, 25:75:0.1 or 30:70:0.1) to give ceratinadins A (1, 0.00018%, wet weight), B (2, 0.00012%), and C (3, 0.000022%), together with known compounds, aerophobins-1 (0.00029%) and -2 (0.000030%), aplysamine-1 (0.00047%), purealidins E (0.00040%), (0.00015%), and L (0.000014%), fistularins-1 (0.000049%) and 2 (0.000037%), and (0.000014%), an

Ceratinadin A (1) was obtained as an optical active $\{[\alpha]_{D}^{20} + 51 (c)\}$ 0.45, MeOH)} brown amorphous solid. The ESIMS spectrum of 1 showed the pseudomolecular ion peaks at m/z 666, 668, 670 [(M+H)⁺, (1:2:1)], indicating the presence of two bromine atoms, and the molecular formula of 1 was revealed to be C₂₄H₂₁N₅O₈⁷⁹Br₂. by HRESIMS data $[m/z \ 665.98296 \ (M+H)^+, \Delta \ -0.30 \ mmu]$. The IR absorptions indicated the existence of OH and/or NH (3610, 3580, and 3130 cm⁻¹) and carbonyl (1670 cm⁻¹) functionalities. The ¹H and ¹³C NMR data (Table 1) disclosed that **1** consisted of 2 carbonyls, 11 sp² quaternary carbons, 1 sp³ quaternary carbon, 5 sp² methines, 1 sp³ methine, 3 sp³ methylenes, and 1 methoxy. Comparison of the ¹H and ¹³C NMR chemical shifts of C-1-C-8 for 1 with those reported for a known bromotyrosine alkaloid such as purealidin J² suggested that **1** possessed a 2,4-dibromo-1-hydroxy-3-methoxy-spiro-cyclohexadienylisoxazole unit (C-1-C-8, N-9, and 6-0), which was confirmed by the ¹H-¹⁵N HMBC correlation for H-7/N-9 in addition to ¹H-¹³C HMBC correlations (Fig. 1). The existence of a trihydroxy quinolinone ring (N-1', C-2'-C-10') was

^{*} Corresponding author. Tel.: +81 11 706 3239; fax: +81 11 706 4989. E-mail address: jkobay@pharm.hokudai.ac.jp (J. Kobayashi).

deduced from the ¹H and ¹³C NMR chemical shifts for C-2'-C-10' of 1,4 which was supported from correlations observed in the ¹H-¹H COSY and HMBC spectra of 1 (Fig. 1). Interpretation of the ¹H-¹H COSY and HMQC spectra of 1 disclosed a segment N-11 to C-13. $^{1}\text{H}-^{13}\text{C}$ HMBC correlations for $\text{H}_{2}\text{-}7/\text{C}\text{-}10$, H-11/C-10, and $\text{H}_{2}\text{-}12/$ C-10 indicated that C-8 and N-11 were connected through an amide bond. The remaining part of 1 consisting of C₃H₂N₂ unit was deduced to be an imidazole ring from the ¹H-¹⁵N HMBC correlation for H-15/N-16 as well as ¹H-¹³C HMBC correlations (Fig. 1). ¹H-¹³C HMBC correlations for H₂-13/C-14 and H₂-13/C-15 indicated the linkage between C-13 and C-14. The ¹H-¹⁵N HMBC correlation for H-8'/N-16 disclosed the connection between N-16 and C-7'. ROESY correlations for H-15/H-8' and H-17/H-8' also supported the connection. The relative stereochemistry of a spiro ring of **1** was assigned as 1.6-trans by comparison of ¹H NMR data of 1 with those of known 1.6-trans and 1.6-cis 2.4-dibromo-1-hvdroxy-3-methoxy-spiro-cyclohexadienylisoxazoles. The absolute stereochemistry of 1 was elucidated to be 1R and 6S, since the pattern of the CD spectrum of 1 was coincident with that of purealidin J². Thus, the structure of ceratinadin A was concluded to be **1**.

Ceratinadin B (**2**) was obtained as an optical active $\{|z|_D^{20} + 55 (c 0.25, MeOH)\}$ brown amorphous solid. The molecular formula of **2** was established as $C_{24}H_{22}N_6O_8^{79}Br_2$ by HRESIMS data $[m/z 680.99386 (M+H)^*, \Delta -0.18 mmu]$. The 1H and ^{13}C NMR data (Table 1) were almost coincident with those of a known bromotyro-

Figure 1. Selected 2D NMR correlations for ceratinadin A (1).

sine alkaloid, compound $1.^{14}$ The detailed analysis of spectral data of **2** including 2D NMR data (Fig. 2) disclosed that the structure of ceratinadin B (**2**) was the same as compound **1** including the relative stereochemistry. However, the CD spectrum of **2** showed opposite pattern to that of compound **1**, suggesting that ceratinadin B (**2**) was the enantiomer of compound **1**. Thus, the absolute stereochemistry of **2** was elucidated to be 1R and 6S.

Ceratinadin C (3) was obtained as an optical active $\{[\alpha]_D^{20} + 14 (c 0.15, MeOH)\}$ colorless amorphous solid. The ESIMS spectrum of 3

Table 1NMR data of ceratinadins A (1) and B (2) in DMSO-de^a

Position	1		Position	2	
	$\delta_{\rm H}$ [mult., J (Hz)] ^b	$\delta_{\text{C}}^{\text{c}}$ or $\delta_{\text{N}}^{\text{d}}$		$\delta_{\rm H}$ [mult., J (Hz)] ^b	δ_{C}^{c}
1	3.93 (1H, br s)	73.5	1	3.86 (1H, d, 6.8)	73.5
1-OH	6.37 (1H, br s)		1-OH	6.34 (1H, d, 7.8)	
2		113.1	2		113.0
3		147.1	3		147.1
3-OMe	3.65 (1H, s)	59.6	3-OMe	3.62 (1H, s)	59.6
4		120.8	4		120.8
5	6.55 (1H, s)	131.2	5	6.83 (1H, s)	131.2
6	, ,	90.3	6	,	90.2
7a	3.20 (1H, d, 18.0)	39.3	7a	3.07 (1H, d, 18.0)	39.3
7b	3.63 (1H, d, 18.0)		7b	3.54 (1H, d, 18.0)	
8	, , , , , , , ,	154.4	8	, , , , , , , ,	154.2
9		-116.7	10		158.8
10		159.1	11	8.56 (1H, br s)	
11	8.62 (1H, br s)	114.6	12	3.49 (2H, m)	38.0
12	3.51 (2H, m)	37.9	13	2.71 (2H, m)	24.1
13	2.92 (2H, m)	24.6	14		120.3
14	, ,	132.0	15		118.7
15	7.77(1H,s)	119.5	16	12.00 (1H, br s)	
16	, , ,	178.2	17	, , , ,	146.5
17	9.26 (1H, s)	135.9	17-NH ₂	7.29 (2H, br s)	
18	(, -)	22.1	18	12.24 (1H, br s)	
1'	12.02 (1H, br s)	130.0	1'	11.77 (1H, br s)	
2'	7.75 (1H, d, 4.6)	125.0	2′	7.64 (1H, s)	124.1
3'	(, _,,	140.2	- 3′	(, - ,	139.9
4'		173.2	3′-OH	8.94 (1H, s)	155.0
5′		112.5	4′		173.2
6′		145.2	5′	6.51 (1H, s)	112.5
6'-OH	14.69 (1H, s)	1 1012	6′	0.01 (111, 0)	149.5
7'	1 1100 (111, 0)	109.1	6′-OH	14.34 (1H, s)	1 101
8'	7.05 (1H, s)	109.8	7′	11.51 (111, 5)	103.2
9'-OH	10.90 (1H, s)	100.0	8′	6.83 (1H, s)	114.0
10'	10.30 (111, 3)	129.1	9′	5.05 (111, 3)	137.2
10		125.1	9′-OH	10.24 (1H, s)	137.2
			10′	10.24 (111, 3)	129.0

^a ¹H and ¹³C chemical shifts are referenced to the DMSO- d_6 (2.49 and 39.5 ppm, respectively). ¹⁵N NMR chemical shifts are referenced to the formamide (-267.5 ppm).

^ь 600 МНz.

^c 150 MHz.

 $^{^{\}rm d}$ 50 MHz.

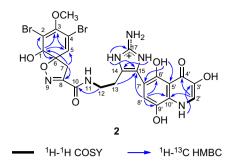


Figure 2. Selected 2D NMR correlations for ceratinadin B (2).

Figure 3. Selected 2D NMR correlations for ceratinadin C (3).

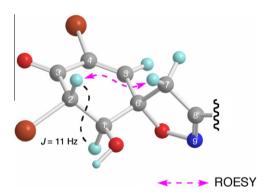


Figure 4. Relative stereochemistry for a spiro ring of ceratinadin C(3).

showed the pseudomolecular ion peaks at m/z 476, 478, 480 [(M+H)⁺, (1:2:1)], indicating the presence of two bromine atoms, and the molecular formula of **3** was revealed to be $C_{14}H_{15}N_5O_4^{79}Br_2$ by HRESIMS data [m/z 475.95636 (M+H)⁺, Δ –0.61 mmu]. The IR absorptions indicated the existence of OH and/or NH (3610,

Table 2NMR data of ceratinadin C (**3**) in DMSO-d₆^a

Position	$\delta_{\rm H} \left[{ m mult.,} J \left({ m Hz} ight) ight]^{ m b}$	δ_{C}^{c}
1	4.18 (1H, br d, 9.8)	73.3
2	5.17 (1H, br d, 11.0)	57.6
3		183.8
4		121.3
5	7.64 (1H, s)	146.9
6		90.5
7a	3.10 (1H, d, 18.0)	37.9
7b	3.63 (1H, d, 18.0)	
8		153.8
10		158.9
11	8.62 (1H, br s)	
12	3.38 (2H, m)	37.3
13	2.62 (2H, m)	24.2
14		124.2
15	6.60 (1H, s)	109.4
16 ^d	12.13 (1H, br s)	
17		146.9
17-NH ₂	7.38 (2H, s)	
18 ^d	11.71 (1H, br s)	

 $^{^{\}rm a}$ $^{\rm 1}$ H and $^{\rm 13}$ C chemical shifts are referenced to the DMSO- $d_{\rm 6}$ (2.49 and 39.5 ppm, respectively).

3580, and 3300 cm⁻¹) and carbonyl (1670 cm⁻¹) functionalities. The ¹H and ¹³C NMR data (Table 2) were close to those of purealidin J², except for signals due to 2,4-dibromo-3-methoxycyclohexa-2,4-dienol moiety. Inspection of the 2D NMR data (Fig. 3) of 3 disclosed that 3 possessed 2,6-dibromo-5- hydroxycyclohex-2-enone moiety in place of 2,4-dibromo-3-methoxycyclohexa-2,4-dienol moiety of purealidin J. The relative stereochemistry for a spiro ring of 3 was deduced from the ROESY correlation for H-2/H-7 and J value (11 Hz) between H-1 and H-2 as shown in Figure 4. The absolute stereochemistry of 3 was elucidated as follows. Treatment of purealidin I with TFA at room temperature for 1 h followed by C₁₈ HPLC separation (CH₃CN/H₂O/TFA, 20:80:0.1) gave a reaction product, the structure of which was the same as 3 including the relative stereochemistry (Fig. 5).¹⁵ The CD spectrum of ceratinadin C (3) was coincident with that of the reaction product obtained from purealidin J. Therefore, the absolute stereochemistry of 3 was elucidated to be 1R, 2S, and 6S. Thus, the structure of ceratinadin C was concluded to be 3.16

Though several bromotyrosine alkaloids possessing a 6-(4-imidazolyl)-4-quinolinone moiety were reported so far, 4,14 ceratinadins A (1) was the first bromotyrosine alkaloid possessing a 6-(N-imidazolyl)-4-quinolinone moiety. Ceratinadins A (1) and B (2) showed antifungal activity against *Cryptococcus neoformans* (MIC, 4 and 8 μ g/mL, respectively) and *Candida albicans* (MIC, 2 and 4 μ g/mL, respectively), while ceratinadin C (3) did not show such activity (MIC, >32 μ g/mL).

Figure 5. Chemical conversion of purealidin J into ceratinadin C (3).

^ь 600 MHz.

c 150 MHz

^d Exchangeable.

Acknowledgments

We thank Mr. Z. Nagahama for his help with sponge collection, Dr. E. Fukushi, Graduate School of Agriculture, Hokkaido University, for measurement of ¹H–¹⁵N HMBC spectrum, and Ms. S. Oka, Center for Instrumental Analysis, Hokkaido University, for measurements of ESIMS. This work was supported by Grant-in-Aid for Science Research from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

References and notes

- Blunt, J. W.; Copp, B. R.; Munro, M. H. G.; Northcote, P. T.; Prinsep, M. R. Nat. Prod. Rep. 2010, 27, 165. and references therein.
- Kobayashi, J.; Honma, K.; Sasaki, T.; Tsuda, M. Chem. Pharm. Bull. 1995, 43, 403. and references therein.
- Hirano, K.; Kubota, T.; Tsuda, M.; Watanabe, K.; Fromont, J.; Kobayashi, J. Tetrahedron 2000, 56, 8107.
- Mukai, H.; Kubota, T.; Aoyama, K.; Mikami, Y.; Fromont, J.; Kobayashi, J. Bioorg. Med. Chem. Lett. 2009, 19, 1337.
- 5. Ceratinadin A (1): brown amorphous solid; $[\alpha]_{0}^{20}$ +51 (c 0.45, MeOH); UV (MeOH) λ_{max} 244 (ϵ 23,400), 331 (5800), 377 (3700) nm; CD (MeOH) λ_{ext} 247 ($\Delta\epsilon$ +4.5), 288 (+4.6) nm; IR (film) ν_{max} 3610, 3580, 3130 (br), 1670, 1600, 1550,

- 1460, 1200, 1150, 670 cm $^{-1}$; 1 H and 13 C NMR (see Table 1); ESIMS m/z 666, 668, 670 [(M+H) * , 1:2:1]; HRESIMS m/z 665.98296 [(M+H) * , Δ -0.30 mmu], calcd for $C_{24}H_{22}N_5O_8^{79}Br_2$, 665.98326.
- 6. Ceratinadin B (2): brown amorphous solid; $[\alpha]_D^{20}$ +55 (c 0.25, MeOH); UV (MeOH) λ_{max} 239 (ϵ 26,400), 282 (13,200), 344 (5300) nm; CD (MeOH) λ_{ext} 250 ($\Delta\epsilon$ +3,35), 289 (+2,73) nm; IR (film) ν_{max} 3610, 3580, 3370 (br), 1680, 1450, 1200, 1140, 670 cm⁻¹; ¹H and ¹³C NMR (see Table 1); ESIMS m/z 681, 683, 685 [(M+H)*, 1:2:1]; HRESIMS m/z 680.99386 [(M+H)*, Δ -0.18 mmu], calcd for $C_{24}H_{23}N_6O_8^{79}$ Br₂, 680.99404.
- 24112314628 Δ12, 080.59404. 7. Ceratinadin C (3): colorless amorphous solid; $[α]_D^{10}$ +14 (c 0.15, MeOH); UV (MeOH) $\lambda_{\rm max}$ 257 (ϵ 4800) nm; CD (MeOH) 234 ($\Delta\epsilon$ +2.84), 266 (+1.20) nm; IR (film) $\nu_{\rm max}$ 3610, 3580, 3300 (br), 1670, 1600, 1540, 1430, 1270, 1200, 1130, 1020, 1000, 920, 840, 800, 720, 670 cm $^{-1}$; 1 H and 13 C NMR (see Table 2); ESIMS m/z 476, 478, 480 [(M+H) * , 1:2:1]; HRESIMS m/z 475.95636 [(M+H) * , Δ –0.61 mmu], calcd for C₁₄H₁₆N₅O₄ 79 Br₂, 475.95697.
- 8. Cimino, G.; De Rosa, S.; De Stefano, S.; Self, R.; Sodano, G. *Tetrahedron Lett.* **1983**, 24, 3029.
- 9. Xynas, R.; Capon, R. J. Aust. J. Chem. 1989, 42, 1427.
- 10. Tsuda, M.; Shigemori, H.; Ishibashi, M.; Kobayashi, J. J. Nat. Prod. 1992, 55, 1325.
- 11. Gopichand, Y.; Schmitz, F. J. Tetrahedron Lett. 1979, 41, 3921.
- 12. König, G. M.; Wright, A. D. Heterocycles 1993, 36, 1351.
- 13. Nishiyama, S.; Yamamura, S. Bull. Chem. Soc. Jpn. 1985, 58, 3453.
- 14. Nicholas, G. M.; Newton, G. L.; Fahey, R. C.; Bewley, C. A. Org. Lett. 2001, 3, 1543.
- 15. Capon, R. J.; MacLeod, J. K. Aust. J. Chem. 1987, 40, 341.
- 16. It cannot be denied that ceratinadin C (3) is an artifact generated during the purification process.